
CPSC 233 – Coding Challenge 4 – Practice 2

Note that # indicated protected access. Bold and italics indicates abstract.

Bouncer class: The height should be greater than 0. If 0 or less is provided, set it to a
default of 1.0. heightAfterBounces is abstract and represents height after specified
number of bounces. bounce should update the height to reflect a single bounce:
implement by calling heightAfterBounces. numberOfBounces: returns number of
bounces the ball takes before remaining still on the ground. A height of less than 1 means
there will be no more bounces. Call heightAfterBounces (in a loop) to get the number of
bounces. Format returned by toString: ‘Height: <height> Number of bounces:
<number>’

Ball class: The ball will be bounciness% of it’s original height after a single bounce.
Round a height less than 1 to 0. The bounciness is a percentage value (between 0
(exclusive) and 100 (exclusive)). Default to 50%. Format returned by toString: ‘[Ball]
Height: <height> Number of bounces: <number> Bounciness: <bounciness>’.

Trampoline class: The bounciness of a jumper is (weight + height)/(3.5*height) percent.
The weight of the jumper is between 50 (inclusive) and 300 (inclusive) pounds. If weight
is invalid, default to 140. Format returned by toString: ‘[Trampoline] Height: <height>
Number of bounces: <number>.

Notes: Do not duplicate instance variables from parent class in child class. Instead
invoke appropriate super constructor and methods in parent class. The toString methods
in child classes should invoke toString in parent rather than getter methods in parent
class.

Hint:

We can calculate the height after bounciness by the equation;

newHeight = currentHeight * bounciness

In the trampoline class, we can calculate bounciness as;

bounciness = (weight + currentHeight) / (3.5 * currentHeight) percent.

	CPSC 233 – Coding Challenge 4 – Practice 2

