Easy problem:
Write a program in python to calculate the sum of the series $\left(1^{*} 1\right)+\left(2^{*} 2\right)+\left(3^{*} 3\right)+(4 * 4)$ $+\left(5^{*} 5\right)+\ldots+\left(n^{*} n\right)$.

Sample Output:
Input the value for nth term: 5
5*5 = 25
4*4 = 16
$3 * 3=9$
2*2 $=4$
$1 * 1=1$
The sum of the above series is: 55

Medium problem:
Write a program in python to make such a pattern like right angle triangle using number which will repeat the number for that row.

Sample Output:

Input number of rows: 5

Hint: use print('text", end = ") for printing without new line

Hard Problem:

Write a program in python to print a pyramid of digits as shown below for n number of lines.

Sample	Output:
Input the number of rows: 5	34543
232	
567898765	4567654

Challenging Problem:

In the magical land of Byteland, there are three kinds of citizens:

- a Bit - 2 ms after a Bit appears, it grows up and becomes a Nibble (i.e. it disappears, and a Nibble appears)
- a Nibble - 3ms after a Nibble appears, it grows up and becomes a Byte
- a Byte -5 ms after a Byte appears, it grows up, splits into two Bits and disappears

We want to know the answer to the following question: what would the population of Byteland be immediately before the time Nms if only 1 Bit appeared at time 0 ms Oms?

Find the population (number of citizens) of each type from Oms to Nms.

Input

- a single integer N.

Output
Print a single line containing four space-separated integers - time, the number of Bits, Nibbles and Bytes.

Example Input

5

Example Output

0100
1100
2010
3010
4010
5001

